THE PIGMY SPERM WHALE (KOGIA BREVICEPS) ON SOUTH AUSTRALIAN COASTS, PART III ${ }^{(1)}$

By Herbert M. Hale, Hon. Assoclate, South Australlan Museum

Plates 1-4 and text fig. 1-12

SUMMARY

Herein are described examples of Kogia not previously recorded from South Australia, with additional information concerning previous records. Following, under "Discussion" a comparative study of South Anstralian specimens is made from available data, including measurements, cte., concerning the exterior and the skulls.

The information so far recorded, herein and elsewhere, supports the view that only one species of Kogia cxists. Further, while there are differcuces-sometimes considerable differences-between the skeletons of individnal specimens, these as yet cannot be aggregated to provide satisfactory cvidence that separate populations or schools occur. Neverthelcss, cxamination of the features of a large number of specimens, when present at the same time in given localities, could be illuminating.

INTRODUCTION

Below are listed the known strandings of Kogia on South Australian coasts, with record of the material recovered and placed in the South Australian Museum.

Pregnant adult female, April 25, 1937 (Reg. No. M.5009) ; and female suckling calf (M.5010) ; Port Victoria in Spencer Gulf. Half cast and complete skeleton of both. Male foetus, in formalin ${ }^{(2)}$ (M.5011),

Unsexcd example, August, 1944 (M.5197); Sleaford Bay, near Port Lincoln in Spencer Gulf. Skıll, sternum and a few other bones.

[^0]Adult female, August 7, 1957 (not recovered except for some teeth) with unsexed calf (M.6156); Sleaford Bay, near Port Lincoln in Spencer Gulf. Skull and portion of right ramus of lower jaw of calf.

Unsexed juvenile (not recovered ${ }^{(3)}$) and young male (M.6186); July 11, 1958, Largs Bay, in St. Vincent Gulf. Complete skeleton of M.6186.

Adult female and female suckling calf, June 28, 1959 (M.6256 and M.6257) ; Enconnter Bay. Complete skeleton of both.

Adult male, September 29, 1959 (M.6266); Glenelg, in St, Vincent Gulf. Complete skeleton.

A mandible said to have come from Encounter Bay and noted by Wood Jones, is not included as an authentic South Australian record (Hale, 1947, p. 544).

My sincere thanks are due to Mr. A. Rau, who has enthusiastically assisted in the collecting of a number of small whales, and with his varions assistants has prepared the skeletons of all examined by me.

To Miss M. Boyce I am indebted for the outline drawings and photographs of the skulls, sterna and tongue bones.

DESCRIPTION OF ADDITIONAL MATERIAL

FEMALE AND CALF (REG, NO. M.6156) SLEAFORD BAY, AUGUST 7, 1957. BODY LENGTH $\mathbf{1 , 7 0 0} \mathbf{m m}$.

The skull of the calf and portion of the right ramus of its mandible, as well as some of the teeth of both female and calf are available.

The stranding of these two examples was reported by Miss N, M. Follett, who, thirteen years before, and during the same month, Angust in mid-winter, reported the stranding of a Kogia, but here again the difficult terrain made it impossible to secure more than the skull and a few odd bones (Hale, 1947, p. 531).

For recovery of this second skull from Sleaford Bay I am grateful to the late Mr. W. C. Johnston, then of Port Lincoln, who, on request, visited the locality a few days later, took a few external measurements, and moved the bodies of both female and calf above high tide mark. Some time afterwards he was able again to make his way to Sleaford Bay but found both specimens partly eaten and badly damaged, apparently by foxes; he did, however, recover the skull of the calf
(3) Hale, 1959, p. 334, pl, XL.
and kindly bronght it to the Museum. For some external measurements see [3. 217 herein.

Skull

Aceording to the flesh measurements supplied by Mr. Jolinston the skoll of this calf is distinctly less than seven times in the body length, measured correctly in a straight line from the notch in the tail to the tip of the snont.

The rostrom, from tip to anterior wall of left nostril, is not much less than hall the total leugth of the skull.

The supraotcipital, when riewed from the side, is slightly convex but in general faintly simuous; medianly it has a slatlow ginter, which becones evancesent as it approaches the foramen magmum; measured aeross its narrowest part, the smpraoceipital is more than one and two-thirds times its length from the upper edge of the foramen magnum to the triangular apex, and the endyles are prominent, separated dorsally by a distanco equal to one-half the length of the condyles. The foramen magum is ovate ($\mathrm{pl} .1, \mathrm{D}$) and is higher than wide.

The lateral surfaces of the maxillae are moch as in most, of the other skulls examined, the greatest depths being 43 mm . (left) and 32 mm . ; the total length of the skull is 265 mm . The maxillo-malar sutures are indistinct on both sides, the malar and maxilla being fused; both sutures are sinuate, mot descending steeply at about anterior third to form a decided V, but rather a shallow U. The length of the left suture is 77 mom ., that of the right somewhat shorter. The maxillary crest is not clevated above the level of the upper edge of the supraocipital and the suture betweon the occipital complex and the maxillae is quite open, as also are those between the maxillae and right premaxilla, which does not reach quite to the summit of the dorsal erest. The maxillary fossas are shallow dorsally but the borders herin to slope mors abruptly to deepening inssate, at a point midway between the right nostril and the vertex. The profroutal is narrow in front, not widely trmeate as in call M.6186, nor is it elevated ahove the right premaxilla on the opposite side of the right nostril. The anterior ends of both premasillae appear on the palatal surface. The maxillary alveolar grooves extend back from the anterior end of the broad rostrum for a distance of $45-52 \mathrm{~mm}$., that is almost to, or a little beyond, the middle of the length of the rostrum, from tip to the anterion margins of the palatines.

Teeth of female and calf. When Mr. Johnston first examined the mother and hor call M.6156, shortly after they were stranded at Sleaford Bay, he removed from both young and adult all the teeth he could discover. In the mandible of the female he found only fourteen, in that of the calf thirteen. As it is reasonable to suspect more to be present Mr. Johnston agreed to search further but, as aforementioned, the specimens had sustained considerable damage before his second visit.

The teeth from the female are stout, each approximately 30 mm . in length and most of them are very much more curved than those of an adult previously cast ashore at Sleaford Bay (Hale, 1947, fig. 11).

The longest of the teeth of the call is 14 mm , in length. Two of the teeth are conjoined for five-sevenths of their length, the tips being free and separated.

For additional details see Discussion,

YOUNG MALE, LARGS BAY, JULY 11, 1958 (REG, NO, M.6186). BODV LENGTH $1,930 \mathrm{~mm}$.

External Features

These are dealt with in part in a previous note (Hale, 1959, pp. 334-336, fig. 1-2). In deseribing the exterior of this example I recorded the fact that, althongh the body proportions approach those of suckling call M.5010, "The snout is considerably shorter and has a more abrupt downward dorsal curvature, its tip being on a level with the eye'. Also, the high dorsal fin was situated slightly in advance of the middle of the length of the animal.

As mentioned elsewhere herein, the snout anterior to the mouth is musnally short, being only 2.07 per cent of the total lengtly of the animal, whereas in two other young specimens from South Australia the snout measured thus is 5.2 and 6.3 of the body length.

Skeleton

When the skull was subsequently removed and cleaned it was at once obvions that it was relatively much smaller than in other examples examined by me. In the last-mamed, the skull is at most barely more than seven times in the body length, usually less, whereas in M. 6186 it approaches cight times in this length. The relatively short snont and small skull are associated with the more forward position of the dorsal fin in relation to the body length.

The rostram of the skull of M.6186, from tip to anterior wall of left nostril, is decidedly less than half of the total length of the skull, thus being relatively short, as in female calf M,5010, from Port Victoria. The supraoccipital lias a shallow and rather wide median gutter. Its upper margin medianly is only slightly produced and rounded, while the lateral margins curve gently downwards, so that the skull, as seen from the rear, presents a very different appearance to that of other skulls examined (pl. 2, C) ; the bone is more than one and one-half fimes wider than long. The occipital condyles are prominent, widely separated dorsally, the gap being equal to one and one-third times the beight of the condyles. The foramen magnum is slightly obovate, almost circular ($\mathrm{pl}, 2, \mathrm{C}$), and is as wide as bigh. The squamosal and frontal are distinctly marked off from the occipital complex.

The lateral surfaces of the maxillae are musually low, that of the right side, as measured from the posterior end of the maxillo-malar suture, is only 18 mm , and is decidedly lower than that of the left (26 mm .) . The total length of the skull is 243 mm ,

The maxillo-malar suture is very distinct and is S-shaped, the anterior part forming a deep V, most pronounced on the left side, where the length of the suture is 50 mm . as against 56 mm . on the right side. Both malars have the apex subacute and the greatest length of the left is more than one and one-third times the length, the right only one and one-half times the length,

The dorsal crest is not strongly elevated posteriorly and indeed reaches only to the level of the supraoccipital; anlerior to this, however, it curves upwards to form a well elevated crest,

The maxillary fossae are deeper than in other South Anstralian calves, sloping stecply from the bordering wall. The prefrontal, truncate in front, forms a high thin erest between the nares, and is elevated above the level of the right premaxilla alongside the right nostril.

On the palatal surface the anterior ends of the premaxillae appear on both sides, the exposed portions being 9 mm . in length in both. On each side the maxillary alveolar groove extends back from the anterior end of the rostrum for a distance of 70 mm ., approximately seven-tenths of the length from the apex of the short rostrum to the anterior margin of the palatines; as previonsly noted (Hale, 1959, p. 335), there are two small teeth near the anterior eud of the rostrum. The width between the postorbital processes is greater than elsewhere in the skull.

The lower jaw has thristeen teeth in the right ramus, twelve in the left.

In the tongue bones (pl. 3, A) the basihyal is hexagonal, the anterior margin with a well marked U-shaped medtan incision, on each side of which is a short rounded cartilage. The ceratohyals are cartilaginous and the ossified portion of the stylohyals is longer than the thyrohyals. The latter are well separated from the basihyal by cartilage; each thyrohyal is much longer than wide and the bone is subcordate.

The sternum is not composed of three entire sections, but of four. The manubrium, apart from the eartilaginous portions, is not greatly expanded anteriorly, where its greatest width is only twice that of the posterior margin; there is so trace of a median suture and the whole bone is considerably wider than its length. The anterior margin has a rounded incision, as shown in pl, $4, \mathrm{~A}$. The second segment is little less in length than the mambrium, as taken from the anterior notch of the last named, and has the anterior margin convex and the posterior obliquely inclined to the left of the animal; the abovementioned plate shows the cartilage separating this and other ossified components. The third ossified segment is irregularly quadrangular in shape, the anterior margin inclined towards the lelt side of the animal. The fourth segment is suall, wider than long and separated from the third by cartilage equal to its own length.

The cervicals, as in most examples of Kogia, form one solid mass, the height of which (87 mm .) is not much less than the greatest width (94 mm .) ; the spinous process is, in general, much as in Yamada's No. 5 example (1954, p. 48 , fig. 8); similarly the dorsal process of the vertebrae is also relatively shorter,

The first of the fourteen thoracic vertebrae has the neural arch complete, the canal little wider than deop, and the dorsal spine less than nne-fourth of the depth of the vertebra. In the last thoracic the dorsal process, measured from the upper margin of the neural arch, is slightly shorter than the distance between the venter of the centrum and the dorsal limit of the neural canal. In all of the ten lumbar vertebrae the dorsal process is decidedly shorter than the lastmentioned measurement. There are twenty-six caudals; there is no trace of paired metapophyses after the third caudal. The neural canal becomes an open groove on the fourteenth and is barely evident on the seventeenth.

There are fifteen chevrons; the members of the last pair are not mited, those of the rest completely fused.

For additional measurements of skull see Discussion.
The ribs number thirteen on the right side, fourteen on the left. The anterior nine pairs have a double articulation.

Length of ribe, taken in a straight line from head to free end of bony portions.		
Rib	Riglit.	Left. rum.
1	160	160
12	245	245
3	290	295
4	310	308
5	310	305
6	313	310
7	300	290
8	298	996
9	276	970
10	252	254
11	293	235
12	215	214
13	167	180
14	0	72

Thus the first twelve pairs are practically symmetrical, but the right rib of the thirteenth pair is decidedly shorter than the left, and abruptly shorter than the twelfth ribs. The last rib on the laft side is rudimentary and was free of the vertebral colum.

Remarks. As will be noted from the above description this young male is unusual in some respects, and is the only Kogia examined by me in which, notwithstanding carcful search, any traces of the pelvis werc found (Hale, 1959, p. 336).

FEMALE (REG. NO. M.6256) AND MALE CALF (M.6257), ENCOUNTER BAY, JUNE 28, 1959. BODY LENGTHS $2,980 \mathrm{~mm}$. AND $1,892 \mathrm{~mm}$.
On the abovementioned date it was reported that a young whale had "beached himself beside the body of his fatally injured mother". This instance evoked a graphic account of the nrge of a suckling calf to remain with its mother under all cireumstances (see also Hale, 1947, p. 531).

The fcmale in this casc became injured on a recf wherc, according to one observer, she "had been cut on rocks when seraping barnacles from her body. She made for the beach, grounded and was stuck".

Another of the witnesses of the strandings, Mr. G. H. Rumbelow, of Encounter Bay, stated: "We did our best to save the calf by driving lim out to sea. Some of the onlookers dragged the mother whale on to the beach, but the calf wouldn't leave. It went out to the reef but came in again and ran itself on to the shorc."

Early next day Mr. A. Ran, with two other members of the Museum staff recovered both specimens, which, as suspected from descriptions given, proved to be Kogia, and brought them to the Museum; thas they were examined about eighteen hours after death, with the colouration presumably not greatly affected by recent stranding. The specimens had not been subjected to sunlight but had been cut about by visitors daring the night. However, with exception of the dorsal fin of the calf, all parts were recovered; the dorsal fin of the female had been ent off, and also some of the adjoining flesh of the back, so that, while the fin itself was in perfect condition, it was not possible to ascertain with certainty its position in regard to the total body length.

The admittedly meagre evidence available seems to indicate that when the sluggish Pigmy Sperm Whale becomes injured, or even touches bottom, in shallow waters, it immediately makes its way to the adjoining beach. This may apply to other whales, particularly the smaller species, Mesoptodon, Berardius (Hale, 1939, p. 5), etc.

External Features of Female

The colour of the female was light blue-grey above and white below; the dorsal colour was, in fact, much paler than in any other of the examples seen by me. The white of the lower portions extended upwards to about three inches below the eye and included the lower half of the depth of the snout. In the caudal area the white was restricted to the underside, the sides and dorsum being pale blue-grey.

The body was fully four and one-fourth times its greatest depth, The head was deep, with the snout blunt and rounded (fig. 8); the blowhole was large, 85 mm . in width, crescentic and oblique, the left end of the opening 250 mm ., in vertical level, from the tip of the snout, the right end 275 mm .

The falcate dorsal fin (fig. 12) was long and low, its length $(400 \mathrm{~mm}$.) four and three-fourths times the height, and 13.3 per cent of the total length of the animal. The pectoral limbs (fig. 3) were rather slender, two and two-third times as long as deep. The dorsal keel of the tail terminated 45 mm . in advance of the narrow caudal notch, and the width of the flukes was relatively less than in the adult male No. M. 6266 (see figs. 1 and 5 herein).

For additional measurements of exterior and skull see under Discussion.

Fig. 1-4. Aged female and her male calt, Encounter Bay; 1-2, candal fins: 3-4, pectorna fins ($1 / \%$ nat. size).

Skeleton of Femaie
The skull is very slightly less than one-seventh of the total length of the animal. The rostrum, from its tip to the anterior wall of the left nostril, is relatively distinctly longer than in the young calf accompanying M. 6256 , being more than half the total length of the skull, viz., 1.7 in length of skull. The supraoccipital, as scen from the side, is concave, and has a well defined groove on the upper threcfourths of its length; its dorsal margin is broadly triangular medianly, where it is 9 mm . below the top of the maxillary part of the crest, the premaxillary part being a trifle more elevated; from the median angle the lateral margins curve outwards and only slightly downwards; the narrowest width of the bone is a little less than one and threefourths the height, measured as in other examples recorded herein from the upper margin of the foramen magnum to the triangular dorsal apex.

The prominent occipital condyles are separated widely dorsally, the height of the condyles being little more than one and one-half
times the width of the gap; ventrally the condyles are separated by a distance equal to only one-third of the dorsal gap. The foramen maguum is obovate, very litfle higher than wide (pl. 2, A). The lateral faces of the maxillae, above the maxillo-malar suture, are deep, 80 mm . on left side, 54 mm . on the right. The distinct maxillomalar suture is irregularly triangular, eurved downwards posteriorly for only a very short distance.

The dorsal crest is strongly elevated posteriorly with, as already noted, the premaxillary element slightly elevated above the maxillary part. The maxillary fossae are deep, sloping steeply from the narrow horders.

The prefrontal is nearly half the length of the rostrum as measured from tip to anterior wall of left naris and is elevated as a crest above the level of the premaxilla alongside the right nostril.

The anterior ends of the premaxillae appear on the palatal surface for a length of 87 mm ., which is equal to one-half of the distance between the tip of the rostrum and the anterior margin of the palatines; the maxillary grooves are 115 mm , in length on both sides, about half the length of rostrum measured as ahove. No upper teeth were present.

The rami of the mandible tare firmly fused anteriorly for a distance of 87 mm , but the tins are narrowly separated to a length of 10 mm .; the distance between the condyles is about six-sevenths of the midline length of the jaw. There are fourteen teeth in the left ramus, thirteen in the right; they are only slightly curved and the anterior nine or ten have the tips worn and blunted in varying degree.

In the tongue bones ($\mathrm{pl}, 3, \mathrm{~B}$) the basihyal is hexagonal, distinctly wide than long, and with the anterior margin bisinnate, and capped with a short, irregular cartilage, while the posterior margin is coneave. The cartilaginous ceratohyals are much shorter than the ossified portions of the stylohyals. The thyrohyals are much shorter than the stylohyals, and are suboval in shape; the bony plates are fused to the basihyal, leaving a jagged gutter for the greater part of the length on both surfaces, the gutters being filled with cartilage.

In the scapola the acromion is curved to an unusual degree and in both left and right abmost touches the coracoid; the calf of this female has the acromion and coracoid well separated distally, the first-named showing only slight curvature.

The sternum (pl. 4, B, ventral view) consists of three segments, all entire, while the sternum as a whole has a distinct curvature towards the left side of the animal. The manabrium is fully one-fourth
us wide again as long and its anterior edge has a deep notch, nearly one-third of the length of the bone; above the notch the anterior margin is romded, then sweeps steeply down to the lateral ends of the wing-like expansions of the distal half; the second segment has markedly concave sides and is as long as the distance between the posterior margin of the manubrium and the terminal end of its median anterior notch; the third is short and very irregularly quadrate.

The cervicals form a solid mass, with the dorsal process high; the cervicals elosely resemble those of Yamada's No, 6 specimen (1954, p. 48, fig. 8).

In the first and second of the thirteen thoracic vertebrae the neural areh is broken. The dorsal process of the last thoracic, measured, as atways herein, from the upper limit of the neural canal, is one and one-thind times the distance between the ventral keel of the ceutrum and the apex of the narrowly triangular canal, while it is nearly threc-fifths of the total depth of the vertebra.

The eighth of the nine lumbar vertebrae has the dorsal process even shorter than in Yamada's photograph of this vertebra in his No. 5 (fig. 9, right), and the dorsal spines of all lumbars are relatively short as compared to Yamada's example No. 6.

In the twenty-three candal vertebrae the neural canal becomes a completely open groove on the twelfth, whereas it is entirely roofed over on the eleventh. Metapophyses are not apparent after the fonrth candal. There are thirteen chevrons, the components of all mited.

There are thirtem ribs on the right side, twelve on the left; the greatest lengths of the bony portions, where not damaged, are given below.
Length of ribs, taken in a straight line from
head to free end of bony portions.
Rib
No.
1
2 underside reached to within two inches below the eye.

The snout was, relatively, longer than that of the female, and tapered to a blunt point (fig. 9); this difference in the shape of the snout in mother and calf was apparent also in a previous record (Hale, 1947, pl. XIV). The distance between the tip of the snout and the axilla was a little greater, proportionately, than in the female.

As in the mother the blowhole was wide (65 mm .), crescentic and oblique; in vertical level the left end of the opening was 183 mm . from the tip of the snout, the right end 205 mm . The pectoral limbs were fully two and two-third times as long as greatest width (fig. 4).

The dorsal keel of the tail terminated 30 mm . in advance of the narrow median notch; the flukes were relatively not as wide as in the mother and swept backwards to a greater degree (fig, 2).

Skeleton of Male Calf

The skull is a little less than six and one-half times in the total length of the animal. The rostrum, measnred from the tip to anteriar wall of left nostril, is little less than half the length of the skull. The occipital complex (supraoccipital) has a shallow median depression for about three-fourths of its length, expanding downwards from the apex and with an irregular median tuberosity towards its ventral termination; the upper margin is medianly triangular, the apex of the triangle 10 mm . below the top of the maxillary part of the dorsal crest; from the median portion the lateral margins curve outwards almost horizontally, mnch as in the male calf from Largs Bay (M.6186), but this example differs in the decided median triangular dorsal elevation (cf. pl. 2, B and C); the bone, measured from the upper margin of the foramen magnum to the triangular dorsal apex, is slightly more than one and three-fourths wider than long, with the breadth moasured across the narrowest part, The rather prominent occipital condyles, as in the mother (M.6256) are widely separated dorsally, the height of the condyles being little more than one and two-third times the width of the gap; ventrally the condyles are separated by slightly more than one-fourth of the dorsal gap. The foramen magnum is obovate, angular dorsally and is ane and onefourth times higher than wide ($\mathrm{pl}, 2, B$). The lateral surfaces of the maxillae, above the maxillary-malar suture, are deep (50 mm .) on the left side, but distinctly lower, 35 mm ., on the right. The maxillomalar suture is distiuct, irregularly triangular and curved downwards posteriorly for only a very short distance.

The dorsal crest is strongly elevated posterionly, the pre-maxillary portion a little lower than the maxillary elevations. As in the mother
the maxillary fossae slope deeply inwards from the narrowly rounded bordering walls.

The prefrontal is, as usual, truncate and slightly excavate anteriorly when the cartilage is removed; it is much shorter than in the mother, with the crest between the nares not elevated above the level of the premaxilla alongside the right nostril.

On the palatal surface the anterior cods of the premaxillae appear for a length of 30 mm , nne-fourth of the distance between the tip of the rostrum and anterior margin of palatines. The maxillary grooves are 65 mm . (left) and 70 mm . in length, much less than half the length of the rostrom, measured as above. There are no upper teeth, but in the lower jaw there are fourteen in the right ramus, thirteen in the left; the teeth are as in a female calf previonsly illustrated (Hale, 1947, fig. 10), slightly curved and with the tips feebly hooked; the longest is 15 mm . in length, the shortest almost 14 mm .

The distance between the condyles of the rami, which are not fused anteriorly, is not much less than the mid-line length of the mandible.

The bony parts only of the tongue bones are before me, the cartilaginous portions having disappeared during maceration. The basibyal is broadly hexagonal, wider than long and with the anterior margin narrow and slightly obliquo, with no suggestion of a median incision; the stylohyals are one-third longer than the oval thyrohyals.

The last of the presumably three stenebrae is missing but obviously was present. The cartilaginous parts of the sternum are not available, even in part, but in the bony portion of the manabrium the greatest length is equal to the greatest width and not much less than twice the width of the posterior margin; the anterior median notch is wide, angular at posterior end, and is not quite one-twelfth of the greatest length of the manubrium; from the anterior notch the Jateral borders curve downwards and inwards on each side to form semicircular wing-like projections; the two components are completely finsed, but with some trace of a median suture, and the transverse posterior margin is equal to a little more than half of the length as measured from the end of the anterior notch. The second stenebra consists of one bone, with the lateral margins concave and the anterior margin inclined to the right; it is widest anteriorly, where it is seventenths of its greatest length, the latter being five-sevenths of the greatest length of the manubrium.

The cervicals are not fused into one solid mass, the centrum of the seventh being quite separated from that of the sixth cervical;
the epiphyis of the posterior end of the centrum of the sixth cervical and both the anterior and posterior epiphyses of the seventh are completely frec; the dorsal process of the cervical vertebrae is relatively long, as in Yamada's No. 6 example (1954, p. 48, fig. 8) and tapers to an acute dorsal point.

The first of the fourtcen thoracic vertebrae has the neural arch complete, the canal wider than deep, and the acute dorsal spine more than one-fourth of the depth of the vertebra. The dorsal process of the last thoracic, measured from the upper margin of the neural canal, is almost one and three-tenths times the distance between the ventral keel of the centrum and the dorsal end of the triangular canal, and is distinctly more than half the total depth of the vertebra.

In the nine lumbar vertebrae the eighth (to compare with Yamada's photographs of this vertebra: fig. 9, right) has a dorsal process much longer than in Yamada's No. 6 example.

The dorsal processes of the twenty-four caudal vertebrae are progressively shorter than those of the lumbars. On the thirteenth caudal the neural canal becomes an open groove, with the merest indication of the neural arch. No trace of paired metapophyses are obvious after the fourth candal.

There are thirteen chevrons; the small components of the last pair are free, those of the rest mited.

For additional details of external features and skeleton see Discussion.

There are thirteen ribs on the right side, fourteen on the left; the twelfth to fourteenth ribs on the left side are short and were separated from the vertebral column by cartilage equal to their own length.

Leagth of rihs, taken in at stright line from		
head to free end of bony portions.		
Rib	Right.	Left.
No.	143μ	nm.
1	162	164
9	240	249
3	280	280
4	280	285
5	284	288
6	255	284
7	271	269
8	255	$B r o k e n$
9	242	245
10	925	285
11	215	211
12	194	163
13	Broken	81
14	73	0

ADULT MALE, GLENELG, SEPTEMBER 29, 1959 (REG. NO. M.6266). BODY LENGTH $2,730 \mathrm{~mm}$.

This example was stranded at Glenelg early on the morning of the abovementioned date and, thanks to the assistance of the Glenelg Corporation, was loaded on to the Museum truck and reached the Museum a couple of hours later. It was thus the only South Australian example to be examined so soon after death-in fact it was still warm when received.

External Features

The disposition of the colours seemed to be much as in the photographs of a calf previously published (Hale, 1959, p. 334, pl. XL). It differed, however, in that the back was dark grey, much darker than in the female and calf from Encounter Bay, taken three months before. The white of the underside extended to about one inch below the eye; there was no sharp demarcation of the two colours. From the level of the anus to the end of the tail the colour was dark grey, both

Fig. 5.7. Adult male, Glenelg; 5, caudal fin; 6-7, left and right pectoral limbs ($1 / 6$ nat. size).
above and below, except for a white median patch on the underside of the tail. The pectoral limbs were white below, merging at edges into the dark grey of the outer laces.

The body was more than four times its greatest depth. The head was deep and blunt (fig. 10) ; the snout, anterior to the gape, was shorter than in the adult female M. 6256, the last-named being of approximately the same body length; the blowhole (42 mm . in width) was crescentic and markedly oblique, the left end of the opening 315 mm ., in vertical level, from the anterior and of the snout, the right end 837 mm .

The relatively large falcate dorsal fin (fig. 11) originated only slightly behind the middle of the body length and was more than three times as long as high. The pectoral limbs were nearly three times longer than wide (fig. 6-7). The dorsal keel of the tail terminated at the median candal "notch"; posterior to the dorsal keel, however, the flukes overlapped for a length of 60 mm . and, at greatest width, for 17 mm . (fig. 5), a condition not oceurring in other examples examined.

For additional notes on the exterior and of the skull see under Disenssion.

The Skeleton

The skull, 420 mm , in length, is six and one-half times in the body length. The rostrum, from tip to anterior wall of left nostril, is decidedly more than half the total length of the skull. The supraoccipital has no median gulter and seen from the side is markedly concave; it is relatively very wide, its narrowest breadth nearly twice the height from the upper margin of the foramen magnmm to the apex; medianly its dorsal edge is broadly subtriangular and does not reach the level of the posterion end of the dorsal crest. The occipital condyles are prominent, widely soparated dorsally by a distance equal to lualf their height; ventrally the condyles meet. The foramen magnum is oval in shape, its height nearly one-third greater than its width (pl. 2, D).

The distinct maxillo-malar suture is simuate, its anterior portion straight and running subparallel to the lower edge of the malar for a distanee equal to more than hall the length of the latter; thence it rises in the form of a wide U, which soon recurves to meet the frontal.

The dorsal crest posteriorly is elevated and broad, The maxillary fossae are deeply excavate, sloping steeply from the rounded edges of the bordering wall. The prefrontal is long, due to the fact that anteriorly the ossification of the cartilage has proceeded considerably
further than in the skulls of the calves described herein; it is truncate at the anterior end, from which it rises steeply, the posterior portion forming a thin crest rising between the nares to above the level of the right border of the left nostril.

The anterior ends of the premaxillae appear on both sides of the palatal surface for a distance of 60 mm . The maxillary alveolar grooves are 130-135 mm . in length, a little more than three-fourths of the distance between the anterior end of the broad rostrum and the front margin of the palatines.

The width between the condyles of the rami of the lower jaw, which are firmly fused at the symphysis for a distance of 50 mm ., is little less than the mid-line length of the mandible. There are no teeth in the upper jaw but in the lower there are fourteen teeth on the left side and fifteen on the right; the curvature of the teeth is as in an adult female previously figured (Hale, 1947, fig, 11), and they are subequal in size, $28-32 \mathrm{~mm}$. in length.

The basihyal of the tongue bones ($p 7,3, C$) is slightly notehed anteriorly, a little wider than long and with the posterior margin irregularly serrate; on each side of the anterior notch of the basihyal is a small rounded cartilage; the cartilaginous ceratohyal is relatively much shorter than as shown in Benham's figure (1902, pl. iii), possibly due to the fact that the ossification of the stylohyal is more advanced and that his ceratohyal represents, it the distal part, the proximal end of the stylohyal; in M.6266 the ossified parts of the stylohyals are one-fourth longer than the bony portions of the thyroliyals; the latter are irregularly semicircular in outline, with the outer edges convex and smooth, the rest of the bony margin irregularly serrate, while, as shown in pl. $3, \mathrm{C}$, they are well separated from the basihyal by cartilage.

The sternum (ventral view, see pl. 4, C) is composed of three stenebrae, but only the anterior two are entixe, the left side of the last, unfortunately lost before the photograph was secnred, was wholly eartilaginous, but of the same shape and size as its opposite ossified member. The manubrimi is greatly expanded anteriorly, where its greatest breadth is three times that of the posterior margin and more than its length; there is a timy anterior incision at the middle of the anterior margin, but $n 0$ median suture, although tiny foxamina oceur ou the mid-line. The second segment is less than the length of the manubrium from posterior margin to anterior notch, while the ossified portion of the third is barely more than one-third the length of the second and is irregularly subquadrate.

The rest of the skeleton was examined in situ after partial dissection of the animal. The cervicals are fused into a solid mass; the dorsal process is short as in Yamada's No. 5 example (1954, p. 48, fig. 8 , upper') but as seen from the side its shape is very different, the dorsal end forming a broad obtuse angle, with little backward inclination; the fused epiphysis of the seventh is concave and fits firmly against the attached ephiphysis of the first thoracic. These epiphyses are both eroded in the centre as if an abscess had been present.

The first of the twelve thoracic vertebrae has a complete nenral arch, with its canal one and three-fifths times wider than deep; the acute dorsal spine, as measured from the npper margin of the neural arch, is short, less than onc-fifth the height of the vertebra. The dorsal process of the last thoracie is noarly one and one-quarter times the distance between the ventral keel of the centrum and the dorsal end of the narrowly triangular neural canal, and is a little more than half of the total depth of the vertebra. The eighth of the nine lumbar vertebrac has the dorsal process (measured from dorsal end of neural canal) one-half of the total depth of the vertebra.

As usual, the dorsal processes of the twenty-five caudal vertebrae beeome progressively shorter, the nemral canal becoming an almost open groove on the twelfth, the two sides of the neural arch nearly meeting on this vertebra. Metapophyses disappear on the sixth caudal. There are only eleven chevrons; the members of all are mited. It should be mentioned that maceration was carried ont very carefully, cvidenced by the fact that even the timiest caudals are preserved.

For further comparative details sec under Discussion.
There are twelve riths on each side; excepting the last, the greatest length of the bone in each pair is almost uniform, as shown in the following table.
Length of ribs, taken in a straight line from
hual to frot cud uf bony portions.
Rib
No.
1

Food

The thick-walled and internally strongly convoluted first compartment of the stomach contained beaks of a Cephalopod, identified by the Curator of Molluses, Mr. B. C. Cotton, as belonging to a squid (Sepioteuthis australis); in addition there were portions of the exoskeleton of long-tailed Decapod crustaceans, inchuding parts of a Peneid prawn, and ligaments from a kangaroo. For identification of these last I am indebted to Mr. I. Thomas, Department of Zoology at the University of Adelaide; they probably represent the remains of bait used by cray-fishers or big-game fishermen. The rest of the stomach contained a large volume of thick soupy matter, stained almost black with sepia from the ink sacs of the squids, while the contents of the intestine throughout were similarly coloured. According to Mr. Cotton Sepioteuthis may oeen in schools, in which case this Kogia had encountered, shortly before its death on a sandy shore, such a swarm, as around the mouth there were many shallow, freshly made short cats, in addition to other healed scars. The diet of Kogia is obvionsly varied (see also Hale, 1947, p. 544 and Scheffer and Slipp, 1948, p. 308).

Parasites

There were numerous barnacle scars on the body, behind the pectoral fins and extending as far back as the anus.

Amongst the food remains in the first compartment of the stomach was a mass of nematode worms. As usual in specimens examined by me in the flesh tapeworm cysts were imbedded in the flesh.

Edible Qualities

Seven people requested beef from the carcass of this male. They reported that it constituted an exeellent hot meal and provided some of the most tender steak they had eaten. This notwithstanding the fact that the specimen lad not been bled and had been dead for 24 hours or so when leshing was commenced. It was noted further that the steaks when cold were not so palatable and in fact then had little appeal as food. Hubbs (1951, p. 409) reports that "the staff of Scripps Institntion and friends ate a large part of the deep-red flesh of the pygmy sperm whale" captured on a beach in Califormia, and notes their reactions. In Japan the species is utilized as food whenever it is taken.

DISCUSSION

Scason of Strandings

Glover Allen (1941, p. 23) writes "what significance may be attached to the fact that most of the North Atlantic reeords are for the cooler months of the year is uncertain".

In Japan, Yamada (1954, p. 53) notes that "The appearance of kogiids of: Taiji is confined to the trying summer season probably due to their migrating habit'". Gunther, Hubbs and Beal (1955, p. 268), suggest that there may be a northward movement, in the northern hemisphere, between antum and spring. They write, "It is quite possible that the pygmy sperm whale, like some of the larger eetaceans, moves rather far towards the poles, in the summer, to feed on the rich pelagic food supply of those regions, returning to warmer waters to breed." Hubbs (1951, p. 409) earlier discassed the distribution of Kogia.

The examples which have been beached on South Australian coasts have come ashore during the colder half of the year. The dates of strandings indicate that Kiogia is present in South Anstralian waters at least between late April and late September; also that during this period calves as well as adults of both sexes occur. For example in July, 1958, two yomg specimens (Hale, 1959, p. 333) were noticed in St. Vincent Gulf, and soon came ashore at Largs Bay. From early in June, 1959 (winter) until September (spring) of the same year fishormen and others reported that small whales with blunt heads were seen travelling slowly to and fro along the coasts of Encounter Bay and St. Vincent Gulf. During this period a female and her calf were stranded at Eueounter Bay, while three months later an adult male (M.6266) came ashore in St. Vincent Gulf (see also Hale, 1947, p. 532). Most of the Sonth Anstralian strandings occurred during calm weather.

According to published records Kogia has been east ashore in New South Wales (south of lat. 30 S) during August and September. On the other hand the similarly few dates of New Zealand strandings extend well into the summer season, August to late January (Oliver, Proc. Zool. Soc., London, 1922, p. 567).

External Characters

Boschma (1951, p. 12) has called attention to the fact that more exact knowledge of the external features of Kogia is desirable.

Unfortunately, in relatively few strandings is it possible for the worker to bring the whale to his institution before post-mortem
changes have resulted in change of colour, or, as is so often the case, before a stranded or captured Kogia is mutilated. Naturally, strandings of whales, large or small, are most often reported from populated areas, and before an animal is recovered, even after a lapse of only a few hours, vandals have time to mutilate it. However, I have been fortunate in being able to examine at the Museum a few whole specimens. Some external measurements of these follow, together with meagre data provided from another source.

External measurements of young male (M.6186(4)) and adult male (M,6266) from Largs Bay and Glenelg, St. Vincent Gulf.

Measurements.	M. 6180.		M.6966.	
	mim.	per cent.	mm.	per cent.
Total length to notch of tail flukes	1,930	100	2,730	100
Greatest depth of body	440	22.7	630	23.0
Tip of snout to vertical level of anterior corner of rye	180	9.3	372	13.6
Tip of mandible to vertical level of anterior corner of eye	140	7.2	270	10.0
Tip of snout to vertical level of anterior end of base of dorsal fin	930	48.1	1,430	52.3
Tip of mandible to axilla	386	20.0	680	24.9
Width of flulses	475	94.6	763	27.9
Meight of dorsal fin	155	8.0	152	5.5
Length of base of dorsal fin	290	11.4	510	18.6
Greatest. length of pectoral fin	300	15.5	350	12.8
Greatest width of pectoral fin	105	5.4	165	6.0
Length of gape to posterior fold	119	6.1	152	5.5
Length of eye.	$\bigcirc 4$	1.2	30	1.1
Depth of eye	13	0.6	15	0.5

External measurements of two adult females and their calves. M.6156, calf (sex \#) of Sleaford Bay female; M. 6250 and 6257, female and male calf from Encounter Bay (5), (Measurements of Sleaford Bay examples as supplied by Mr. W. L. Johnston.)

Measurements.	recovered.		M.6156.		M.6256.		M.6257.	
	mm.	por cent.	mm.	per cent.	mm.	per cent.	min.	per cerit.
Total lengtle to notch of tail flukes	$2,9 \geq 5$	100	1,720	100	2,980	100	1,890	100
Greatest depth of body.	665	22.7	450	26.1	665	22.3	475	85.1
Tip of snout to vertical level of anterior corncr of eye	-	-	-	-	400	13.4	270	14.2
Tip of mandible to vertical level of anterior corner of eye	238	8.1	-	-	235	7.8	150	7.9
Tip of mandible to axilla .			-	-	658	22.0	450	23.7
Width of flukes.	660	22.5	415	24.1	750	25.1	378	19.9
Height of doranal fin....	115	3.9	-	-	110	3.7	-	
Greatest length of pectoral fin	355	12.1	-	-	405	13.6	260	13.7
Greatest width of pectoral fin	140	4.7	-	-	150	5.0	05	5.0
Length of gape to postorior fold.	-	-	-	-	190	6.3	123	6.5
Length of eye ..	-	-	-	-	30	1.0	25	1.3
Depth of eye	-	-	-	-	10	0.3	12	0.6

(4) See also Hale, 1959, pp. 334-335.
(5) Sce also Hale, 1947, p. 535, for measurements of another cow and her calf.

Length of Snout. The length of the snout, anterior to the tip of the lower jaw, is very variable in length. In the South Australian specimens measured in the flesh the snout of juveniles, $1,710 \mathrm{~mm}$. to

Fig. 8-9. Heads of aged female and her male calf, Encounter Bay ($1 / 5$ nat. size).
$1,930 \mathrm{~nm}$. in body length, varies from 2.0 to 6.3 per cent of the body length; the first named, 2.0 per cent, is extreme, as mentioned elsewhere herein. In adults of both sexes from southern Australia, $2,730 \mathrm{~mm}$. to $2,980 \mathrm{~mm}$. in body length, the proportion ranges from 3.5 to 5.5 , and this ratio has no relation to sex. The snout length in relation to skull length also has no bearing on size or sex.

Fig. 10. Head of adult male, Glenelg (1/0 nat. size).
Yamada (1954, p. 41) provides measurements of some Japanese examples. These also show differences in the snout length, this varying in two females, of approximately the same size, from 3.3 to 4.0 per cent of the body length.

Thus the length and shape of the snout provide no clear indication either of age, sex or locality. The variation may be due at least in part to the degree of development of the mass of the spermaceti organ, which Glover Allen (1941, p. 26) suggests "possibly acts as a bumper or shock absorber in head-on contacts . . ."

Dorsal Fin. From available data the dorsal fin originates slightly posterior to the middle of the total body length of the animal, or a little in advance of the middle of the body length. Care is necessary to ascertain as closely as possible the most anterior point of the base
of the fin; it seems likely that its more forward position occurs in examples with an unusually short snout.

The fin itself is variable in size and shape. In South Anstralian examples examined in the flesh the following variation occurs:

Fig. 11-12. Dorsal fins of adult male, Glenelg (11) and (12) of aged female, Encounter Bay (1/r nat. size).

Specimen and body length.	Length of fin per cent body length.	Height of fin per cent body length.	Height per cent length of fin.
M.5009. ¢ $2,897 \mathrm{~mm}$.	11.1	3.1	28.2
M.5010. ¢ $1,710 \mathrm{~mm}$.	10.8	3.7	34.0
M.6186. of $1,930 \mathrm{~mm}$.	11.4	8.0	74.0
M.6256. ¢ $2,980 \mathrm{~mm}$.	13.3	3.6	27.5
M.6266. § $2,730 \mathrm{~mm}$.	18.6	5.5	29.8

For comparison the proportions of examples from widely separated North Atlantic localities are given below, viz., Virginia and Massachusetts, U.S.A. (Glover Allen, 1941) and Japan (Yamada, 1954). These are taken from the measurements published by the aforementioned authors and indicate that the dorsal fin is surprisingly small in the Massachusetts adult male, whereas it is unusually high in a South Australian young male (M.6186).

Glover Allen (1941, p. 29), comparing some external characters of the one adult male and one breeding female, from the abovementioned separate localities off the Atlantic coast of the Urited States, remarks that "Apart from the generally greater dimensions of the adult male as compared with the adult female, the only striking difference is in the very much smaller dorsal fin, which in the male is low and narrow, while in the female it is of nearly twice the size (fig. 2) ... Whether or not this is a normal sexual difference, or merely individual variation, future observations may show'.

In the South Australian adalt male (M.6266), 2,730 mm. in body length, the dorsal fin is of practically the same shape and proportions as that of the aged female (M.6256), $2,980 \mathrm{~mm}$. in length; the male, however, has a relatively larger and higher fin (see fig. 11-12 herein).

Gunther, Hubbs and Beal (1955, pp. 263 and 266) writing of Kogia on the Atlantic coast of America, and recording an example from Texas, state that in the case of a specimen recorded from New Jersey by Enders (1942, fig. 2) "The length of the dorsal fin and its vertical height are much the smallest in the New tersey specimen," In the opinion of these anthors "The most unexpected and significant differences seem to be the measurements of snout to eye, snont to blowhole, and snout to dorsal fin. The last measurement is checked by the measurement from the fluke notch to the posterior insertion of the dorsal. These measurements and a comparison of the photographs indicate, with little doubt, that the dorsal fin of the Texas specimen was placed considerably further back than on the other two" (Catiformia and New Jersey).

It seems apparent that in so far as either sex or locality are concerned, the proportions of the dorsal fin have no significance. Yamada, however, writes "I liked to know what was known at sea, especially if they [examples of Kogia] belonged to the same school or were separated." Yamada was given some information by a whater hunting in Tapanese waters; thit individual testified "that No. 5 was with No. 4 in a school of six or seven whales, and No. 6 in another of two or three. This may somewhat favour on one hand the opinion to recognize K. simus and seems on the other to be a new knowledge of the labits ol kogiids", (Yamada, 1954, pp. 51-52; see also note by Palmer, Journ. Mamm., 29, 1948, p. 421.)

As already stated it is recognized that far too few accurate illustrations of the exterior of Kogia are available. Nevertheless, Glover Allen's adult female (1941, pp, 28-29, fig. 2) and a young male
recorded by me (Hale, 1959, p. 335, fig. 1) have the dorsal fin high, with its origin in advance of the middle of the body length.
W. Elliot's drawings of a female from India (simus of Owen, 1869, pl. 10-11) are of doubtful accuracy but show a similar dorsal fin, as also does the iflustration of Fraser and Parker (1949, p. 18, fig. 15) which may be a modification by the artist, Col. Simon, of the figures published by Owen.

While, as mentioned by some other authors, examinations of the variable skeletal characters gives one no reason to recognize more than one species of the genus (see for example Hirasaka, 1937, pp, 120, 135, 139, and Allen, 1941, p. 17), one may venture to support Yamada's indication that the antimal occors in semi-isolated migrating small herds. Further, to suggest that individuals of such schools may he separable from those of other herds by superficial external characters (including colouration), although much evidence is required to substantiate this theory. Comparison of cows and their calves could be useful. For example, in both the cow and female calf from Port Victoria (M.5009-5010) the dorsal fin is relatively small, and originates just behind the middle of the length of the body (cf. Glover Allen, 1941, and Hale, 1959, illustrating individuals with higher fins). The photographs of a male from California (Hubbs, 1951, pl, ii and iii) show a small dorsal fin, very like that of the Port Victoria cow and calf.

Colouration. From examination of the few Pigmy Sperm Whales strauded on South Australian coasts it is obvious that the extent of the darker portions, in relation to the white of the underside, shows considerable variation. The pigmented areas vary in colour also from blue, blue on the sides merging into brownish grey dorsally, dark grey and light bluish-grey.

Yamada (1954, p. 40, fig. 5) illistrates a bracket-like marking which occurs behind the eye in some specimens and, following Hubbs (1951, p. 408, pl. iii), suggests that this could be a generic character of Kogia. Hubbs' published photographs of a specimen taken near Imperial Beach, California, show the bracket very clearly. Gunther, Hubbs and Beal (1955, p. 267) comment on the presence or absence and variability of the marking. (See also note by D. K. Caldwell, Journ. Mamm., 41, 1960, p. 137.) This bracket was especially looked for in examples stranded on our coast during 1958 and 1959 but was not present, although there is possibly a faint indication of it in an unrecovered calf (Hale, 1959, p. 334, pl. XL) known only from
photographs in colour. In the upper figure of the abovementioned plate there appears, very obscmely, an extension of the white ventral colour into the darker area behind the eye ${ }^{(6)}$.

The colouration given for a female and calf from Port Victoria (Hale, 1947, p. 532), namely "jet black above and on the sides, fading into the white of the underside from back of the month to a little posterior to the anus" must now be ignored as being due to postmortem change in the darker areas (Hale, 1959, p. 337).

It is certain that post-mortem changes in colouration can and do occur very rapidly in stranded examples, particularly when they are subject to heat or sunlight. Thas, from available evidence, specimens cast ashore do not necessarily provide a true indication of the life colouration, even thongh they may have died on the beach shortly before examination. However, reasonably fresh examples do show the colour pattern, viz, the distribution of the dark areas in relation to the white,

Skeleton

Skull. Attempts have been made to separate Kogia into species by utilizing skeletal characters.

Below are given some measurements of seven skulls of examples taken on South Australiau coasts. Three of calves, 1,700 mm. to $1,892 \mathrm{~mm}$. in body length, which were accompanying their mothers; one of a young male $1,930 \mathrm{~mm}$. in length; three from adults $2,730 \mathrm{~mm}$. to $2,980 \mathrm{~mm}$. in length. These include for comparison the skull measurements of at fomale and hor suckling calf previonsly recorded (Hale, 1947, p. 536).

The measurements, amplifying data supplied by other workers, show that marked variation occurs.

Skull muasurements of ridults, 2,780-8,980 mm. in length.

Maxsurements.	\&, M,5000.mom, per cent.		9. M. 6256 . mm. per cent.		ふ, M. 6266 . min. percent.	
Total (condylobasal) length	110	100	412	100	120	100
Heright io vertox . . .	24.5	$5!.7$	266	64.5	245	58.3
Width betwoen postorbital procerees .	360	87.8	360	87.3	355	84.5
Hender adge of omeipital condyles in posturior wall of loft natis .	150	36.5	154	37.8	150	35.7
Ideight of supraoceipital from upper margin of foramen magnum	11.5	28.0	133	32,2	122	29.0

(6) During September, 1961, while the present paper was in press, a young female came ashore in St. Vincent Gulf, S. Aust. This had a well defined bracket, comparable to that illustrated by Hubbs and which still could be traced 48 hours after the deatly of the animal.

Skull measurements of adults, $2,730 \cdot 2,980 \mathrm{~nm}$. in length-contimued.
Measurcments.

Skull measurements of calves, 1,700.1,592 mm, in length (Port Victoria, Sleaford Bay amd Encounter Bay).

Measurmenta.	$\begin{aligned} & \text { o., M. } 5010 \text {. } \\ & \text { mim. per cent. } \end{aligned}$		Sex M. 6156. mm. per eent.		$\begin{aligned} & \hat{\delta}, \mathrm{M} .6 \Omega 57 . \\ & \text { min. per eent. } \end{aligned}$	
Total (condylohasal) length	250	100.0	205	100.0	295	100,0
Height to vertex .. .	150	60.0	180	(67.9	186	63.0
Width between postorbital processes	210	8-4,0	240	90.5	262	88.8
Hinder edge of occipital condyles posterior wall of Jeft naris	$12+$	49.6	134	50.5	130	44.0
Height of supraoceipital from apper nargin of foramen magnum	80	32.0	94	35.4	93	31.5
Width of supraceipital it narrowest part between posterior margins temporal fossae	155	62.0	170	64.1	160	56.2
Length of rostrum from tip to autcrior wall of left maris	93	37.2	124	46.7	144	48,8
Tip of rostrum to euterior suergin of palatines	76	30.4	93	35.0	110	40.3
Width of rostrum between antorbital processes	197	50.8	130	49.0	159	53.9
Greatest leugth of pterygoids	97	38.8	115	43.4	139	47.1
Length of left maris	38	13.2	30	11.3	35	11.8
Width of left naris	23	9.2	26	9.8	29	9.8
Height of toramen magaum	42	16.8	38	14.3	38	12.8
Width of foramen magnum	34	1.3 .6	31	11.7	27	9.1
Height of occipital condyles	58	93.9	60	22.6	57	19.3
Width of occipital condyles	64	25.6	67	25.2	70	23.7
Length of mandible (mid-line between tip and level of back of condyles) . .	-	-	-	-	230	77.9
Length of left ramus of mandiblo (condyle to antcrior end)	-	-	-	-	260	88.1
Depth of left ramus at coronoid..	-	-	-	-	70	23.7
Length of symphysis . . .	48	19.2	-	-	50	16.9
Length of alveolar portion	83	33.2	-	-	100	33.9

Skull measurements of young male (M.6186), $1,930 \mathrm{~mm}$, in length, from Largs Bay,

The above measurements indicate that with age the rostrum increases in length in relation to the length of the skull; further, in the four smaller examples ($1,710-1,930 \mathrm{~mm}$. in body length) it is wider than long, whereas in the three adults ($2,730-2,980 \mathrm{~mm}$. in body length) it is longer than wide.

It is now possible to compare the skulls of two breeding females with those of their suckling calves ($\mathrm{pl} .1-2, \mathrm{~A}$ and B); these are from Port Victoria, Spencer Gulf (M.5009-5010, April, 1937) and Encounter Bay on the south coast (M.6256-6257, June, 1959). The skulls of the calves show no detail of import linking them with those of their mothers. It may be noted, however, that in both cow and calf from Encounter Bay the height to vertex is lower, and the pterygoids shorter, than in the female and young from Port Victoria. The occipital condyles in both calves resemble those of their respective mothers, but are similar also to those of some other individuals; in the calf of female M. 6256 the foramen magnum is more ovate than in the parent,

Posterior views of the eight skulls available from South Australia are shown on pl. 1 and 2 herein; these comprise four adults and four juveniles, and serve to illustrate in part the descriptions of the skulls, including the occipital condyles and foramen magnum. The photographs are all to the same scale and, with exception of female M. 5009 (in which the lower jaw bones are wired to the skull) are
shown with the lower edge of the pterygoids and the tip of the rostrum resting in the same plane.

Verlehrat. From the descriptions of skeletons of Kogia I fail to find anything to eorrolate convincingly the varying lengths of the dorsal spines and other characters of the vertebrac with skull differences. The fusion of the epiphyses, however, is of interest.

Glover Allen (1941, p. 24) describing a female $2,210 \mathrm{~mm}$. in body length (pregnant and taken with suckling calf"), states that it "was fully adult, as indicated by the well-ossified mesethmoid and complete union of all epiphyses". 'The degree of fasion of the epiphysess of the vertebrae certaimly seems to lurnish some indication of age, as demonstrated in six of the examples stranded in South Australia; it would appear from this and other skeletal characters (i.e., in the tongue bones, the thyrohyals and basihyal are fused) that the female from Encomter Bay (M.6256) is the ofdest of the specimens. Details of the fusion of the verlebral epiphyses are given below. It will be noted that these fusions follow $n=$ completely uniform sequence (cf. M.(6266 and M.5009).
M.5010, femate calf of M.5009, $1,710 \mathrm{~mm}$. in body length.

Cervical, 7; thoracie, 13; lumbar, 10; candal, 23. Epiphyses of the contra are completely free on the following. Cervical: no. i only, posterior. All thoracies, anterior and posterior. All lumbars, anterior and posterior. Caudal: 1 to 19, anterior and posterior; because of their tiny size and extreme fragility it is impossible, after maceration, to ascertain whother or not free epiphyses were present in the last four candals.
M.6257, male calf of M.6256, $1,892 \mathrm{~mm}$. in honly length.

Cervical, 7 ; thoracie, 14; hombar, 9 ; candal, 24. Hpiphyses of the centra are completely free on the following. Cervical: posterior of contrum 6; both anterior and posterior of centrim 7 . All thoracies, both anterior and posterior. All lumbars, both anterion and posterior. All caudals with exception of 7 , which has the epriphysis attached to. but not completely tused with, the anterior face of the centrum.
M.6186, calf from Largs Bay, 1,930 mm. in body length.

Cervical, 7; thoracie, 14; lmmbar, 10 ; caudal, 26. Epiphyses of posterior of cervieal 7, and all remaining vertebrae both front and back, completely free.
M.6266, adult male from Glenelg, $2,730 \mathrm{~mm}$. in body length.

Cervieal, 7; thoracic, 12; lumbar, 9; caudal, 25. Epiphyses of the centra are completely free on the lollowing. Thoracic: 2 and 3 , anterior muly; 4 to 12 both materioy and josterior. Lambar: 1 to 3 both anterion and posterior; 4, 10 and 11 posterior only. Caudal: 5, 6, 8 and 13, both anterior and posterior; 12 anterior only. Epiphyses fused on all other faces of centra.
M.5009, female from Port Victoria, 2,897 mm. in body length; pregnant and with suckling calf.
Corvical, 7 ; thoracie, 13 ; lumbar, 9 ; candal, 26. Epiphyses of the centra are completely free on the following. Thoracic: 3 to 13 , both anterior and posterior. All lumbars, anterior and posterior. Caudal: 1, anterior and posterior; 2, anterior only; 3 , posterior only.

In the first and second thoracics the epiphyses are almost completely fused with the centrom; from the sixth candal back the edges of the epiplyses are barely or not at all distinguishable from the centrum.
M.6256, adult female (with suckling calf) from Encounter Bay, 2,980 mm. in lody length.
Cervical, 7 ; thoracie, 13; lumbar, 9; candal, 23. All epiphyses are completely fused with the centra.

Sternum. As in examples of Koyia from other localities the sternum of speeimens taken in South Australia exhibit considerable differences ($\mathrm{pl}, 4$). In one case, that of the young male from Largs Bay (pl, 4, Λ), it is composed of four segmonts, instead of the nsual three, and these are all entire; as noted lierein the skall of this calf is also musual.

The degree of development of the anterior median notch of the manubrinm has no significance, nor has the degree of fusion of the two components of each section. In this last respect the sternom of the large male from Glenelg ($\mathrm{pl}, 4, \mathrm{C}$) is interesting in that while the last, or third, stenebra consisted of two separate elements, that on the right side is completely ossified, the other cartilaginous but denser than, and readily distinguishable from, the surrounding cartilage.

Glover Allen (1941, p. 32) considers that "Very likely, as commonly in cetaceans, this wide variation in form of the sternum is a mark of degeneration in the structure'.

REFERENCES OITED

Allen, Glover M. (1941): "Pygmy Sperm Whate in the Atlantic". Zool. Series, Field Mus. Nat. Hist., Chicago, XXVII, pp. 17-36, fig. 1-4.
Benham, W. P. (1902): "Notes on the Osteology of the Short-nosed Sperm Whale". Proc. Zool. Soc., London (1), pp. 54-62, pl. ii-iv.
Boschma, H. (1951) : Bull. L'Inst. Océanographique, Leiden, No. 991. Enders, R. K. (1942): "Notes on a stranded pigmy sperm whale (Kogia breviceps)". Not. Nat. Acad. Nat. Sci., Philadelphia, 111, pp. 1-6, fig. 1-4.
Fraser, F. C. and Parker, H. W. (1949) : Stranded Whales, Dolphins, Porpoises and Turtles on the British Coasts. British Museum (Nat. Hist.), p. 18.
Gunther, G., Hubbs, Carl L., and Beal, M. Allan (1955): "Records of Kogia breviceps from Texas, with remarks on movements and distribution'. Sournal of Mammalogy, 36, pp. 263270, pl. 1-2.
Thale, Herbert M. (1947): "The Pigmy Sperm Whale (Kogia breviceps, Blainville) on South Australian Coasts". Rec. South Aust. Mus., VIII, pp. 531-546, pl. xiv-xviii and text fig. 1-17.
(1959): "The Pigmy Sperm Whale on South Australian Coasts (Continued)". Rec. South Anst. Mins, XIII, pp. 333-338, pl. xl and text fig. 1-2.
Hubbs, Carl L. (1951): "Eastern Pacifie Records and General Distribution of the Pygmy Sperm Whale", Journal of Mammalogy, 32, pp. 403-410, pl. i-iii.
Hirasaka, K. (1937): "On the Pigmy Sperm Whale, Kogia breviceps (Blainville)' '. Mem. Fac. Sci. Traihoku Imp. Univ., XIV, pp. 117-142, pl. i-v and Map 1.
Owen, R. (1866): "On Some Indian Cetacea Collected by Walter Elliot." Trans. Zool. Soc., London, VI, pp. 17-47, pl. 3-14.
Scheffer, V. B., and Slipp, J. W. (1948): "The Whales and Dolphins of Washington State'. American Midland Naturalist, 39, No. 2, pp. 307-309, fig. 41-42.
Yamada, M. (1954): "Some Remarks on the Pyginy Sperm Whale, Kogia". Sci. Rept. Whales Research Inst., Tokyo, Japan, No. 9, pp. 37-58, fig. 1-13 and plate.

EXPLANATIONS OF PLATES

PLATE 1. POSTERIOR VIEWS OF SKULLS.

A and B, adult female, M. 5009 , body length $2,897 \mathrm{~mm}$., and her female calf, M.5010, body length $1,710 \mathrm{mm}$. ; C, sex unknown, M.5197, body length unknown; D, calf, sex unknown, M.6156, body length unknown. (All to same scale.)

PLATE 2. POSTERIOR VIEWS OF SKULLS.
A and B, aged female, M.6256, body length 2,980 mm., and her female calf, M.6257, body length $1,892 \mathrm{~mm}$.; C, young male, M.6186, body length $1,930 \mathrm{mm}$. ; D , adult male, M.6266, body length $2,730 \mathrm{~mm}$. (All to same scale.)

PLATE 3. TONGUE BONES.
A, young male, M.6186, body length $1,930 \mathrm{~mm}$. ; B, aged female, M.6256, body length $2,980 \mathrm{~mm} . ; \mathrm{C}$, adult male, M. 6266 , body length $2,720 \mathrm{~mm}$. (Not to same scale.)

PLATE 4. VENTRAL VIEWS OF STERNA.
A, young male, M.6186, body length $1,930 \mathrm{~mm}$; B, aged female, M.6256, body length $2,980 \mathrm{~mm} . ; \mathrm{C}$, adult male, M.6266, body length $2,730 \mathrm{~mm}$. (Not to same scale.)

[^0]: (1) See Hale (1947 and 1959) for parts I and II.
 (2) Hale, 1947, pp. $534 \cdot 536$.
 a

